Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Coronaviruses ; 2(8) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2251617

ABSTRACT

The emerging new COVID 2019 pandemic, which started in 2019 in China (Wuhan) and is caused by SARS-CoV-2, raises critical concerns due to high morbidity and mortality. As many patients are infected and the numbers still increase, this may suggest that there are different variants of the virus and some of them are more pathogenic. Besides, the virus is suspected to have various evolutionary pathways since SARS-CoV-2 belongs to the RNA viruses' family, which is characterized by a high mutation rate. Additionally, it is crucial to understand the life cycle of the virus to be able to urge antiviral studies. Genotyping studies about viruses are also important in order to understand the transmission and evolution of the virus. The genome of SARS-CoV-2 has a furin-like cleavage site in its S protein that may affect its pathogenicity. It was found that insertions and deletions in S protein have an impact on the transmission and fusion of the virus. The single nucleotide polymorphisms (SNP) genotypes are used to track the relationship of virus isolates. Se-quence alignment revealed the presence of hundreds of inter-host mutations during person-to-per-son transmission. Furthermore, genetic recombination provided a second mechanism for virus evo-lution. In this review, we highlight the life cycle of the virus and methods of virus evolution caused by mutations or recombination of viral genomes.Copyright © 2021 Bentham Science Publishers.

2.
Pathogens ; 9(3)2020 Mar 23.
Article in English | MEDLINE | ID: covidwho-2279331

ABSTRACT

Over the last two decades, the world experienced three outbreaks of coronaviruses with elevated morbidity rates. Currently, the global community is facing emerging virus SARS-CoV-2 belonging to Betacoronavirus, which appears to be more transmissible but less deadly than SARS-CoV. The current study aimed to track the evolutionary ancestors and different evolutionary strategies that were genetically adapted by SARS-CoV-2. Our whole-genome analysis revealed that SARS-CoV-2 was the descendant of Bat SARS/SARS-like CoVs and bats served as a natural reservoir. SARS-CoV-2 used mutations and recombination as crucial strategies in different genomic regions including the envelop, membrane, nucleocapsid, and spike glycoproteins to become a novel infectious agent. We confirmed that mutations in different genomic regions of SARS-CoV-2 have specific influence on virus reproductive adaptability, allowing for genotype adjustment and adaptations in rapidly changing environments. Moreover, for the first time we identified nine putative recombination patterns in SARS-CoV-2, which encompass spike glycoprotein, RdRp, helicase and ORF3a. Six recombination regions were spotted in the S gene and are undoubtedly important for evolutionary survival, meanwhile this permitted the virus to modify superficial antigenicity to find a way from immune reconnaissance in animals and adapt to a human host. With these combined natural selected strategies, SARS-CoV-2 emerged as a novel virus in human society.

3.
Open Vet J ; 12(5): 676-687, 2022.
Article in English | MEDLINE | ID: covidwho-2090739

ABSTRACT

Influenza A viruses (IAV) cause persistent epidemics and occasional human pandemics, leading to considerable economic losses. The ecology and epidemiology of IAV are very complex and the emergence of novel zoonotic pathogens is one of the greatest challenges in the healthcare. IAV are characterized by genetic and antigenic variability resulting from a combination of high mutation rates and a segmented genome that provides the ability to rapidly change and adapt to new hosts. In this context, available scientific evidence is of great importance for understanding the epidemiology and evolution of influenza viruses. The present review summarizes original research papers and IAV infections reported in dogs all over the world. Reports of interspecies transmission of equine influenza viruses H3N2 from birds to dogs, as well as double and triple reassortant strains resulting from reassortment of avian, human, and canine strains have amplified the genetic variety of canine influenza viruses. A total of 146 articles were deemed acceptable by PubMed and the Google Scholar database and were therefore included in this review. The largest number of research articles (n = 68) were published in Asia, followed by the Americas (n = 44), Europe (n = 31), Africa (n = 2), and Australia (n = 1). Publications are conventionally divided into three categories. The first category (largest group) included modern articles published from 2011 to the present (n = 93). The second group consisted of publications from 2000 to 2010 (n = 46). Single papers of 1919, 1931, 1963, 1972, 1975, and 1992 were also used, which was necessary to emphasize the history of the study of the ecology and evolution of the IAV circulating among various mammalian species. The largest number of publications occurred in 2010 (n = 18) and 2015 (n = 11), which is associated with IAV outbreaks observed at that time in the dog population in America, Europe, and Asia. In general, these findings raise concerns that dogs may mediate the adaptation of IAVs to zoonotic transmission and therefore serve as alternative hosts for genetic reassortment of these viruses. The global concern and significant threat to public health from the present coronavirus diseases 2019 pandemic confirms the necessity for active surveillance of zoonotic viral diseases with pandemic potential.


Subject(s)
Dog Diseases , Horse Diseases , Influenza A virus , Influenza, Human , Animals , Dogs , Horses , Humans , Influenza A Virus, H3N2 Subtype/genetics , Zoonoses , Disease Outbreaks , Birds , Mammals , Dog Diseases/epidemiology
4.
Virus Evol ; 8(1): veac005, 2022.
Article in English | MEDLINE | ID: covidwho-1874000

ABSTRACT

Influenza type-A viruses (IAVs) present a global burden of human respiratory infections and mortality. Genome reassortment is an important mechanism through which epidemiologically novel influenza viruses emerge and a core step in the safe reassortment-incompetent live-attenuated influenza vaccine development. Currently, there are no data on the rate, spatial and temporal distribution, and role of reassortment in the evolution and diversification of IAVs circulating in Africa. We aimed to detect intra-subtype reassortment among Africa pandemic H1N1pdm09 (2009-10), seasonal H1N1pdm09 (2011-20), and seasonal H3N2 viruses and characterize the genomic architecture and temporal and spatial distribution patterns of the resulting reassortants. Our study was nested within the Uganda National Influenza Surveillance Programme. Next-generation sequencing was used to generate whole genomes (WGs) from 234 H1N1pdm09 (n = 116) and H3N2 (n = 118) viruses sampled between 2010 and 2018 from seven districts in Uganda. We combined our newly generated WGs with 658 H1N1pdm09 and 1131 H3N2 WGs sampled between 1994 and 2020 across Africa and identified reassortants using an automated Graph Incompatibility Based Reassortment Finder software. Viral reassortment rates were estimated using a coalescent reassortant constant population model. Phylogenetic analysis was used to assess the effect of reassortment on viral genetic evolution. We observed a high frequency of intra-subtype reassortment events, 12 · 4 per cent (94/758) and 20 · 9 per cent (256/1,224), and reassortants, 13 · 3 per cent (101/758) and 38 · 6 per cent (472/1,224), among Africa H1N1pdm09 and H3N2 viruses, respectively. H1N1pdm09 reassorted at higher rates (0.1237-0.4255) than H3N2 viruses (0 · 00912-0.0355 events/lineage/year), a case unique to Uganda. Viral reassortants were sampled in 2009 through 2020, except in 2012. 78 · 2 per cent (79/101) of H1N1pdm09 reassortants acquired new non-structural, while 57 · 8 per cent (273/472) of the H3N2 reassortants had new hemagglutinin (H3) genes. Africa H3N2 viruses underwent more reassortment events involving larger reassortant sets than H1N1pdm09 viruses. Viruses with a specific reassortment architecture circulated for up to five consecutive years in specific countries and regions. The Eastern (Uganda and Kenya) and Western Africa harboured 84 · 2 per cent (85/101) and 55 · 9 per cent (264/472) of the continent's H1N1pdm09 and H3N2 reassortants, respectively. The frequent reassortment involving multi-genes observed among Africa IAVs showed the intracontinental viral evolution and diversification possibly sustained by viral importation from outside Africa and/or local viral genomic mixing and transmission. Novel reassortant viruses emerged every year, and some persisted in different countries and regions, thereby presenting a risk of influenza outbreaks in Africa. Our findings highlight Africa as part of the global influenza ecology and the advantage of implementing routine whole-over partial genome sequencing and analyses to monitor circulating and detect emerging viruses. Furthermore, this study provides evidence and heightens our knowledge on IAV evolution, which is integral in directing vaccine strain selection and the update of master donor viruses used in recombinant vaccine development.

5.
Indian Journal of Medical Microbiology ; 39:S127-S128, 2021.
Article in English | EMBASE | ID: covidwho-1734530

ABSTRACT

Background:Influenza is an important respiratory infection, causing 250,000 to 500,000 deaths annually. Influenza virus A is the most virulent and associated with winter epidemics in temperate regions, more persistent transmission in the tropics, and occasional large-scale global pandemics. But, there is variability in the pattern, and the H1N1 pandemic of 2009-2010 was unusually with a large spike in spring and a sharp decline continuing throughout winter. Varying in pattern is due to antigenic shift and drift and reassortment of the virus. Methods:A prospective study was carried out in Advance Basic Sciences & Clinical Research Lab, Department of Micro- biology in SMS Medical College & Hospital, Jaipur for diagnosis of Influenza A virus as well as subtyping was done using RT-PCR technique over 1 year period (July 2019 to June 2020) and demographic data was noted. Results:Total of 7213 samples were tested, out of which 498 (6.90%) were positive for Influenza A which is less from the previous year’s 22.46%. Out of total positive cases Influenza a (H1N1) pdm09 was 24.9% and InfA H3N2 was 75.10%. InfA H3N2 was the prominent circulating strain in all months while Influenza a (H1N1) pdm09 was prominent strain pre- vious year. Majority of positive cases were found in March 2020 (43.17%), September 2019 (28.51%). Most of these cases 36.14% were from age group between 20 to 40 years. Conclusions: A decline in the positivity of influenza infection compared to last year is seen which could be in part due to circulation of SARS COV 2 and measures of prevention undertaken by community to prevent it. Demographic parame- ters and seasonal variation of Influenza A virus give ideas to create awareness and to improve control strategies to mini- mize the morbidity, mortality and spread of disease.

6.
Microbiol Spectr ; 9(2): e0025721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1410327

ABSTRACT

Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-to-human transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. IMPORTANCE The rapid evolution of viruses, such as influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is challenging the use and development of antivirals and vaccines. Studies of within-host viral evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape viral global evolution as well as development of better antivirals and vaccines. However, little is known about how viral evolution of resistance to antivirals occurs clinically due to the lack of preclinical models that can faithfully model influenza infection in humans. Our study shows that influenza viral evolution through mutation or gene reassortment can be recapitulated in a human lung airway-on-a-chip (airway chip) microfluidic culture device that can faithfully recapitulate the influenza infection in vitro. This approach is useful for studying within-host viral evolution, evaluating viral drug resistance, and identifying potential influenza virus variants before they appear in human populations, thereby enabling the preemptive design of new and more effective vaccines and therapeutics.


Subject(s)
Drug Resistance, Viral/genetics , Evolution, Molecular , Influenza A virus/drug effects , Influenza A virus/genetics , Lab-On-A-Chip Devices , Amantadine/pharmacology , Antiviral Agents/pharmacology , Benzamidines/pharmacology , Guanidines/pharmacology , Humans , Influenza, Human/drug therapy , Influenza, Human/transmission , Lung/virology , Microfluidics , Oseltamivir/pharmacology , SARS-CoV-2/genetics
7.
Viruses ; 13(1)2020 12 22.
Article in English | MEDLINE | ID: covidwho-1025055

ABSTRACT

Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat-pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.


Subject(s)
Chiroptera , Swine , Animals , Biodiversity , Chiroptera/virology , DNA Viruses/classification , DNA Viruses/genetics , Ecosystem , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Reassortant Viruses/genetics , Swine/virology , Swine Diseases/epidemiology , Swine Diseases/transmission , Swine Diseases/virology , Virus Diseases/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL